IHCTpYMEHTAJIbHUMH CHUCTEMaMH, He 3a0e3NedylOoTh BEJIMKE YHUCIIO areHTIB 1 BHCOKY MIBUIKICTbH
pobotu i T.1. [5]

VY 3B’sM3Ky 3 IUM CIpaBXKHS poOOTa IMPHUCBSUEHA BUPIMICHHIO MPOOJIEMH IiABUIICHHS
e(EeKTUBHOCTI BUKOPUCTAHHS PECYPCIB MPU ONEPATUBHOMY YIPABIIHHI MPOEKTAMH CTBOPEHHS Ta
eKCIUTyaTarii 3pa3KiB HOBOTO MPOTPAMHOTO 3a0e3MeueHHs B OpraHi3amisx 3a paxyHOK
BIIPOBA/DKEHHS MYJBTHArCHTHUX TEXHOJOTIM B oOpraHi3amii 3 JUBI3IHHOI0 (XOJICTHYHOIO)
CTPYKTYPOIO.

B sKxocti BUmMamKy 3acTOCyBaHHS IOCHIPKYBAHOTO IIXOAy OOpaHa KOMIIaHisl, BEJIHKE
3HA4YEeHHS IS SIKOi Ma€ B3a€MOJisl Ta €(EeKTUBHICTH CIIBPOOITHHKIB, BIJILIIB CIIBPOOITHHKIB, a
TaKOX e(peKTHBHE IUTAHYBAaHHS Ta BUKOHAHHS MPOCKTHUX 3aB/IaHb .

st anamizy nmaHoi mpoGnemu oOpana kommanis - «Template Monstrsy, 1mo 3aiiMaeTbest
CTBOPEHHSIM Ta peaji3alli€lo, 1 € OJHUM 3 HalOUTBIIMX B CBIT1 MOCTaYaJIbHUKIB IA0JIOHIB JUIsl CAlTIB.

HinboBUM mnpu3HAYeHHSAM pOOOTH € TMPOBEIAEHHS JOCHIKEHb TIpPO BIPOBAIKEHHS
MYJIbTHAT€HTHUX TEXHOJIOT1H B Oprasizaiiii 3 IUBI31IHOI0 (XOJICTUYHOI) CTPYKTYPOIO.

HayxoBa HOBM3Ha po0OOTH MOJISITa€e y 3aCTOCYBaHHI METO/IIB MIATPUMKH OpraHi3allii Ha OCHOBI
MYJIBTHAT€HTHOTO ITiIXO.Y.

Iepesik qxepes NOCUIAHHS.

1. Burtux B.A, Cxo6enes [1.0. MynbTHareHTHbIC MOJIETH B3aUMOICHCTBUS IJIs1 TIOCTPOCHUS
ceTeil MoTpeOHOCTEN M BO3ZMOXKHOCTEH B OTKPBITHIX cHucTeMax // ABTOMaTWKa U TeleMeXaHHUKa. -
2013. -Nel,-C. 177-185.

2. Crob6enes [1.0. Xonuctuveckuit moaxo K CO3aHNI0 OTKPBITHIX MYJIbTHAT€HTHBIX CUCTEM
// Tp. Il Mexaynap. koH(]. 10 poOJI. YIIp. ¥ MOACTUPOBAHUE. B CIIOKHBIX cuctemax, Camapa, 4-9
ceHtsi0ps, 2001. - Camapa- CHI[PAH, 2010. - C. 147 - 160.

3. Aaapee B.B., Munakos U1.A., IlmennunukoB B.B., Cumonosa E.B., Cko6ener I1.0O.
OCHOBBI MOCTPOEHHS MYJIbTHAr€HTHBIX cucTteM. — Camapa: u3a-so [II'YTH, 2007. — 290 c.

4. AbpamoB JI.B., Amnapees B.B., CumonoBa E.B., CkobGenes I1.O. OTkpbITBIE
MYJIbTUAr€HTHBIE CHUCTEMBbl JJIsl MPHUHSITHUS PELIeHU B 3aJayax AMHAMHUYECKOTO paclpeaeieHus
pecypcoB. — Camapa: uzg-so I[1II'VTH, 2008. — 290 c.

5.George Rzevskii FAQ On Agents and Multi-Agent Systems //
http://www.naun.org/journals/educationinformation/eit-11.pdf 5. European Coordination Action for
Agent-based Computing // http://www.agentlink.org

UDC 004.65
Orlovskyi D.L., Ph.D., Associate Professor of the
Department of Software Engineering and
Management Information Technologies
Kopp A.M., Ph.D., Associate Professor of the
Department of Software Engineering and
Management Information Technologies

AN APPROACH TO THE TRANSLATION OF NATURAL LANGUAGE BUSINESS
RULES INTO SQL TABLE CONSTRAINTS

National Technical University «Kharkiv Polytechnic Institute», Ukraine

Introduction. Modern software applications, from mobile applications for Android or iPhone
smartphones to enterprise-level information systems and e-commerce websites, cannot be developed
without components for persistent data storage. Databases and database management systems that
appeared in the late 70s of the previous century were supposed to solve the problem of persistent and
independent data storage for applied software solutions. Database management systems (DBMS) are

55

specialized software systems that manage database structures, make collections of data persistent and
shareable in a secure way [1].

According to the latest rating of the most popular DBMS provided by DB-Engines Ranging
for November 2021 [2], the top four of five in total database management systems are relational table-
oriented DBMS:

— Oracle — relational DBMS with multi-model capabilities, such as document store, graph
DBMS, RDF (Resource Description Framework) store, and spatial DBMS;

— MySQL - relational DBMS with multi-model capabilities, such as document store and
spatial DBMS;

— Microsoft SQL Server — relational DBMS with multi-model capabilities, such as
document store, graph DBMS, and spatial DBMS;

— PostgreSQL — relational DBMS with multi-model capabilities, such as document store
and spatial DBMS.

All of these database management systems require a certain level of training for efficient
database design, development, and maintenance when used in production enterprise projects. First of
all, such DBMS require proficient SQL (Structured Query Language) language skills, the experience
of working with real-world databases, and an understanding of SQL dialects supported by different
database management systems (e.g. PL/SQL in Oracle, T-SQL in Microsoft SQL Server PL/pgSQL
in PostgreSQL etc.).

Problem statement. Hence, it could be a challenge for inexperienced software engineers to
design, extend, or maintain a production database without making critical errors that will possibly
affect all the business. Moreover, the modern software engineering industry considers Agile software
development processes [3] with the same team members responsible for database design, who are
responsible for overall backend programming. Thus, lack of skills and, sometimes, the experience
could lead to poor design solutions or even mistakes of database development.

Related work. Existing studies in the field of business rules translation into SQL database
scripts [4], [5] have considered the most translation of text queries for data retrieval into SELECT
SQL statements. Inspired by the presence of unsolved yet problems, we have proposed an idea of
database generation SQL scripts retrieval from natural language business rules provided as facts about
a certain domain [6].

Later we have elaborated our idea and published the full paper, where the method, algorithms,
and software prototype were proposed [7]. However, in [6] and [7] we addressed only so-called
“facts” business rules that could be provided by business analysts after the preliminary study of the
subject domain. However, in real databases, the structure is as much important as further data
consistency and integrity. Therefore, the approach proposed earlier should be extended with
“constraints” support according to Wiegers classification (see Figure 1) [8].

@Business Rules

v —
-f_r__,./-""'-’ HH"-—\.___
o H""'m
,_.a-'"ff- HM‘“‘“H
n--'"'-d- T
@Facts (_: Constraints @Actlon Enablers C/Inferences @Computatlons

Fig. 1. Business rules classification according to Wiegers [8]

Research aims. This paper aims to the development of an approach to translate natural (or
almost) language business rules into SQL scripts for database tables generation with consideration of
data integrity and consistency constraints. Therefore, the following tasks should be solved in this
study in order to reach the aim:

56

— propose an approach to the translation of natural language business rules into SQL table
constraints;

— verify proposed approach by performing necessary calculations;

— discuss obtained results, summarize the work done, and define future work directions.

Proposed approach. The proposed approach is based on regular expressions, also used before
in our studies [6] and [7], where we have described algorithms to generate DDL (Data Definition
Language) from "facts" business rules.

However, in this short paper, we consider only essential constraints of the MySQL database
management system, such as the following with corresponding business rule patterns:

— CHECK, check_rule ::= (column) {of} (table) {should be} (operator) (value);

— DEFAULT, default_rule ::=
{by default} (column) {of} (table) {should take} (value);

— NOT NULL, not_null_rule ::= {(column) {of} (table) {is required}.

The CHECK constraint in MySQL, as well as similar constraints in other relational DBMS,
should contain conditions built using comparison operators, such as equal (“="), greater than (“>"),
less than (“<”), greater than or equal (“>="), less than or equal (“<="), and not equal (“<>” or “!=").

Therefore, we may introduce an additional rule for the operators mentioned in business rules
and which then will be mapped to mentioned arithmetical operators: operator ::= (greater than|
less than|greater than or equal to|less than or equal to|equal to|not equal to). Otherwise, if any
other operators are given, the business rules should not be processed.

To process the expected structure of natural language business rules, we have come up with
regular expressions to retrieve all of the considered MySQL constraints (mentioned above).

Results. The regular expression for CHECK MySQL and results that demonstrate its testing
are shown below in Figure 2.

(«#)\s+ (of)A\s* (. +)\s+ (should-be)\s+ (. +)\s+ ([\S]+) gm
TEST STRING
weight-of+persons-should«be:less«than:200

Fig. 2. Regular expression testing for CHECK constraints

The regular expression for DEFAULT MySQL and results that demonstrate its testing are
shown below in Figure 3.

(«t)\st(of)\st(.+t)\st(is required) em
TEST STRING

weight-of-persons-is-required

Fig. 3. Regular expression testing for DEFAULT constraints

The regular expression for NOT NULL MySQL and results that demonstrate its testing are
shown below in Figure 4.

(by-default)\s+(.+)\s+(of)\s+(.+)\st(should:take)\s+(.+) gm
TEST STRING
bysdefault-weight-of:persons+should-take-10

Fig. 4. Regular expression testing for NOT NULL constraints

Hence, using the regular expressions demonstrated above, these sample business rules could
be translated into the MySQL statements in order to provide necessary constraints (see Figure 5).

57

weight of persons should be less than 200

weight of persons should be greater than or equal to 10
weight of persons is required

weight default age of persons should take 10

ALTER TABLE 1=
—N ALTER TABLE
ALTER TABLE 1=
ALTER TABLE DersS0NS

;ons ADD CHECK (v
5 ADD CHECK (v
5 ADD CHECK (v
ALTER weight

1t < 200);

1t IS NOT NULL) ;
T DEFAULT 10;

v

CREATE TABLE
id® int(11)
CREATE TABLE percsons | lastnam
id int PRIMARY KEY, fi
= varchar(2553), — weight
me warchar(253),

int(

We 1t CONSTRAINT
) ; CONSTRAINT

PRIMARY KEY |

CONSTRAINT ~COMN:

sons® |
NOT NULL,

12" wvarchar (255) DEFAULT NULL,
ame " warchar (255) DEFAULT NULL,

11) DEFAULT 10,

ht* < 200),

" is not null)

>= 10},

)i
Fig. 5. Regular expression testing for NOT NULL constraints

Conclusion and future work. In this paper, we proposed the approach for translating natural
language business rules into SQL scripts for database tables generation with consideration of data
integrity and consistency constraints. The approach is based on regular expressions, which were
verified for MySQL CHECK, DEFAULT, and NOT NULL constraints on simple examples. In the
future, the exact algorithm of constraints business rules translation into SQL statements should be
elaborated and tested on real databases, and detected limitations should be eliminated.

References.

1. Coronel C., Morris S. Database systems: design, implementation, & management. —
Cengage Learning, 2016.

2. DB-Engines
engines.com/en/ranking

3. Ahmed A., Prasad B. Foundations of Software Engineering. — CRC Press, 2016.

4. Moschoyiannis S., Marinos A., Krause P. Generating SQL queries from SBVR rules //
International Workshop on Rules and Rule Markup Languages for the Semantic Web. — Springer,
Berlin, Heidelberg, 2010. — P. 128-143.

5. Kate A. et al. Conversion of natural language query to SQL query // 2018 Second
International Conference on Electronics, Communication and Aerospace Technology (ICECA). —
IEEE, 2018. — P. 488-491.

6. Kopp A. M., Orlovskyi D. L. Towards the approach to database structure generation from
business rules based on natural language expressions // Information technologies and automation —
2020. — Odessa : ONAFT, 2020. — P. 224-226.

7. Kopp A., Orlovskyi D., Orekhov S. An Approach and Software Prototype for Translation
of Natural Language Business Rules into Database Structure. [Electronic resource]. Access mode :
http://ceur-ws.org/Vol-2870/paper94.pdf

8. Wiegers K., Beatty J. Software requirements. — Pearson Education, 2013.

Ranking. [Electronic resource]. Access mode https://db-

58

