Martepianu X VI Mi>kHapOIHOT HAYKOBO-TIPaKTHUHOI KoH(epeHtIii «IHpopMaIiiiHi TEXHOJIOTT 1 aBToMaTHu3aIis - 2023

multithreaded cross-platform programs, optimizing algorithms and architectures for scalable computing
are current tasks.

The purpose of this work is to address the thread race problem in multithreaded computing of
resource-intensive tasks with parallel access to shared data using appropriate synchronization
mechanisms, such as mutexes.

The thread race problem is considered using the example of solving a typical task of finding the sum
of elements of a super-large array in multithreaded mode.

The algorithm for solving this task is implemented in C++ in the Microsoft Visual Studio 2022 IDE
using the std::vector class — a dynamic array from the STL (Standard Template Library). The standard
std::thread class is used to create and manage threads in the program. Each thread is responsible for a
certain segment of the array for which it calculates the sum of elements in a specially developed function
with execution timing. The standard std::mutex class is used to solve the thread race problem in critical
areas of code.

As a result, a multithreaded algorithm has been developed to implement a typical task of processing
super-large data arrays with protection of the critical area to prevent the thread race problem using
mutexes; the performance of the developed algorithm was investigated with a significant (10°-10°
elements) amount of processed data and a variable (1-14) number of computing threads; a concept was
developed for further application of effective approaches to data protection in concurrent programs
implemented on multiprocessor and multi-core systems.

It was found that solving the thread race problem in the considered task on a modern PC with an
Intel Core i7-12700H processor slows down the program execution by approximately 10 times when
increasing the array size in the aforementioned range. Increasing the number of used threads from 2 to 14
in this case slows down the application implementation by approximately 4 times, regardless of the
amount of data processed.

The use of the obtained developments, together with other advanced software tools to increase
computational performance, will contribute to the development of effective computer models of
technological processes and systems.

UDC 004.65

RESEARCH ON THE DETECTION OF SQL INJECTION ATTACKS BASED ON THE STRING
MATCH APPROACH

A.Kopp (andrii.kopp@khpi.edu.ua)

National Technical University «Kharkiv Polytechnic Institute» (Ukraine)

Abstract. This paper focuses on the problem of detecting and preventing SQL (Structured Query
Language) injection attacks. Recent studies in this area are analyzed and the most common type of SQL
injection attack is examined. The string match approach already known from related work on SQL
injection detection is used to answer the question — which special characters can be used to detect and
prevent SQL injection attacks when analyzing HTTP (Hyper Text Transfer Protocol) traffic. Several null
hypotheses are tested and the subset of characters with the strongest impact is used to build the regular
expression for malicious SQL code detection.

Problem statement. One of the Top 10 Web Application Security Risks recognized by OWASP
(Open Web Application Security Project) [1] is SQL (Structured Query Language) Injection Attacks,
often known as SQLIA. Intruders utilize SQLIA, malicious behavior, or policy violations, to attack online
applications in order to get access to protected information without authorization or even take over the
database server [2]. Authors of [3] claim that SQLIA is a type of cyber-attack that takes use of breaches
in web applications that relate to database-stored data. As a result, hackers may purposefully alter SQL
queries to compromise database security. It is made feasible by taking advantage of weak security
measures used by the online application or DBMS (Database Management System) and SQL syntax flaws

[3].

90

Martepianu X VI Mi>kHapOIHOT HAYKOBO-TIPaKTHUHOI KoH(epeHtIii «IHpopMaIiiiHi TEXHOJIOTT 1 aBToMaTHu3aIis - 2023

One of the most dangerous and regular online application threats is an injection, which happens
when an intrusive party modifies, deletes, or queries data from a DBMS server. Database integrity,
availability, and security may be compromised by SQLIA. Therefore, detecting and preventing SQL
injection attacks is a pertinent yet established study area [4]. The diverse cyber-attack patterns and
strategies employed by hackers make it difficult to identify SQLIA despite the frequency of attacks and
the wealth of studies in this field [5].

Paper [6] asserts that attackers typically take advantage of the WHERE clause, which governs the
dataset results requested from the database. The SQL commands SELECT (to query tables), UPDATE (to
edit records), and DELETE (to delete records) all support the use of a WHERE condition. This kind of
attack, an example of which is shown in Fig. 1 [6], is typically referred to as a tautological SQLIA or
boolean-based SQL injection [7].

http://localhost/actions.php?username=johndoe'OR%201=1--&password=123

lHTTP request

SELECT username, password FROM user
WHERE username = ‘johndoe’' OR 1=1--
AND password = '123'

lMaIicious SQL code

Database DI

Figure 1 — Tautological SQLIA and query string illustration [6]

As demonstrated in Fig. 1, such a malicious SQL query injects the second, always TRUE condition
“l1 =17 via the logical OR operator, forcing the web application to deliver a result. The database server
will not process the remaining portion of this SQL query, which comes after the comment symbols “--”.
As a result, the updated SQL query produces a new outcome that is unrelated to the accuracy of the user
name or password.

As a result of this, authors of [7] take into account particular symbols used to create SQLIA code in
order to identify such cyber-attacks (Table 1).

Table 1 — Symbols typically used to create SQLIA code

Type Characters

String -

Comment - #, 1% %

Wildcard %

Terminator :

Concatenate + |

Assignment =

Comparison > >= < <=, ==, <> I=

Thus, this study aims to answer the following research question — which special characters could
signalize the presence of SQL injection attacks in the HTTP (Hyper Text Transfer Protocol) traffic?

Solved tasks. Therefore, to answer this research question, it is necessary to test the following null
hypothesis:

— for string characters — HO,1: There is no correlation between string characters and SQLIA,;

—for comment characters — HO0,2: There is no correlation between the presence of comment
characters and SQLIA;

91

Martepianu X VI Mi>kHapOIHOT HAYKOBO-TIPaKTHUHOI KoH(epeHtIii «IHpopMaIiiiHi TEXHOJIOTT 1 aBToMaTHu3aIis - 2023

— for wildcard characters — HO0,3: There is no correlation between the presence of wildcard
characters and SQLIA,

— for terminator characters — HO,4: There is no correlation between the presence of terminator
characters and SQLIA,

— for concatenate characters — HO,5: There is no correlation between the presence of concatenate
characters and SQLIA,;

— for assignment characters — H0,6: There is no correlation between the presence of assignment
characters and SQLIA,;

— for comparison characters — HO,7: There is no correlation between the presence of comparison
characters and SQLIA.

Research results. To perform the necessary experiments, let us use “HttpParamsDataset” that
represents values which can be found as values of parameters in HTTP requests [8]. This dataset includes
31067 records, which are divided into two categories [8]:

— benign records (19304 items designated as normal);

— suspicious records (11763 items tagged as anomalies).

Out 0f 31067 records, 10852 records are labeled as “sqli” — these are SQL injection attacks.

Therefore, this dataset [8] was processed to detect the presence of different special characters in the
HTTP request parameters analyzed. The final dataset, which was used to test the hypotheses formulated,
includes the following fields (Fig. 2)

— query —the HTTP request string;

— string — the number of string characters occurred in the HTTP request string;

— comment — the number of comment characters occurred in the HTTP request string;

— wildcard — the number of wildcard characters occurred in the HTTP request string;

— terminator — the number of terminator characters occurred in the HTTP request string;

— concatenate — the number of concatenate characters occurred in the HTTP request string;

— assignment — the number of assignment characters occurred in the HTTP request string;

— comparison — the number of comparison characters occurred in the HTTP request string;

— test — indicates whether the HTTP string is suspicious for SQLIA (1) or not (0).

~ | query ~ |string * | comment| ~ |wildcard | ~ |terminator| ~ | concatenate | ~ | assignment| ¥ | comparison | ¥ | test|-T

1' where 6406=6406;select
count(*) from rdbSfields as
t1,rdbStypes as
t2,rdbScollations as

436 t3,rdbSfunctions as t4-- 1 1 0 1 0 1 0 1
1) and 8514=(select count(*)
from domain.domains as
t1,domain.columns as
t2,domain.tables as t3) and

437 (4666=4666 0 0 0 0 0 1 0 1

438 -3136%') or 3400=6002 1 0 1 0 0 1 0 1
1) where 7956=7956 or

439 sleep(s)# 0 1 0 0 0 1 0 1

440 -7387")) order by 1-- 1 1 0 0 0 0 0 1

Figure 2 — Fragment of the created dataset

Using the logistic regression classification algorithm [9], there was found the “concatenate” variable
has a p-value (0.347) greater than 0.05 (the alpha significance level). Therefore, it is clear that there is no
correlation between the presence of concatenate characters and SQLIA and accept the null hypothesis
HO,5. However, the p-value of the other variables is 0 (< 0.05), which allows us to reject the remaining
hypotheses HO,1 — HO0,4 and H0,6 — HO,7.

Conclusion. This paper addressed the problem of SQLIA detection. The different types of SQLIAS
were discussed and the string match approach was considered for detecting SQLIAs. In addition, the
meaningful features for SQLIA detection were defined. Therefore, the future machine learning models for
SQLIA detection could be based on the selected features except “concatenate”.

92

Martepianu X VI Mi>kHapOIHOT HAYKOBO-TIPaKTHUHOI KoH(epeHtIii «IHpopMaIiiiHi TEXHOJIOTT 1 aBToMaTHu3aIis - 2023

References

[1] OWASP, “OWASP Top Ten,” Owasp.org, 2021. https://owasp.org/www-project-top-ten/

[2] T. Singh and B. Aksanli, “Real-time Traffic Monitoring and SQL Injection Attack Detection for
Edge Networks,” Proceedings of the 15th ACM International Symposium on QoS and Security for
Wireless and Mobile Networks, Nov. 2019, doi: https://doi.org/10.1145/3345837.3355952.

[3] S. Bhardwaj and M. Dave, “SQL Injection Attack Detection, Evidence Collection, and Notifying
System Using Standard Intrusion Detection System in Network Forensics,” Lecture Notes on Data
Engineering and Communications Technologies, pp. 681-692, 2021, doi: https://doi.org/10.1007/978-
981-33-4968-1_53.

[4] M. Alghawazi, D. Alghazzawi, and S. Alarifi, “Detection of SQL Injection Attack Using
Machine Learning Techniques: A Systematic Literature Review,” Journal of Cybersecurity and Privacy,
vol. 2, no. 4, pp. 764-777, Sep. 2022, doi: https://doi.org/10.3390/jcp2040039.

[5] D. Lu, J. Fei, and L. Liu, “A Semantic Learning-Based SQL Injection Attack Detection
Technology,” Electronics, vol. 12, no. 6, p. 1344, Mar. 2023, doi:
https://doi.org/10.3390/electronics12061344.

[6] “Applied Machine Learning predictive analytics to SQL Injection Attack detection and
prevention,” ieeexplore.ieee.org. https://ieeexplore.ieee.org/document/7987433 (accessed Oct. 11, 2023).

[7] O. C. Abikoye, A. Abubakar, A. H. Dokoro, O. N. Akande, and A. A. Kayode, “A novel
technique to prevent SQL injection and cross-site scripting attacks using Knuth-Morris-Pratt string match
algorithm,” EURASIP Journal on Information Security, vol. 2020, no. 1, Aug. 2020, doi:
https://doi.org/10.1186/s13635-020-00113-y.

[8] “HttpParamsDataset,” www.kaggle.com. https://www.kaggle.com/datasets/evg3nlj/http-
paramsdataset (accessed Oct. 11, 2023).

[9] A. Roberts and J. M. Roberts, Multiple Regression. SAGE Publications, 2020.

VK 004.932

KBAHTYBAHHS TPAHC®OPMAHT JIBOBUMIPHUX OPTOI'OHAJIBHUX
INEPETBOPEHD ITPH YIIIIVIBHEHHI 30BPA’KEHb
Maiinantok B. I1., Marsiituyk O. B. (maidaniuk2000@gmail.com, 888sasha@gmail.com)
BinHuIpKui HalliOHABHAHN TexHIYHUI yHiBepcuTeT (YKpaiHa)

Poszenauymo ocobaueocmi keanmysamHs — mpaHchopmaHm — 080BUMIPHUX — OPMOSOHATbHUX
nepemeopeHs npu ywinoHeHHi 30opasicens. Ilokazano, wo 30inbulenns Koe@iyicHma YuiibHeHH MOXHce
Oymu 00CacHymo uepe3 BeKmMoOpHe K8AHMYBAHHA MPAHCHOPManm OUCKPEMHO20 OPMO2OHANbHO2O
nepemeopenus (Yonwa-Aoamapa, JIKII ma inwux). I0eanvHumu Ons supiuienHs 3a60aHb 8€KMOPHO20
K8AHMYBAHHA € HEeUPOHHI Mepexci, Wo CAMOOP2aHi3yIombCs, 3anponoHo8ani @iHcokum eueHum T.
Koxonenom (Self-Organizing Feature Map — SOFM).

3pOCTaHHS CKJIAJHOCTI CUCTEM OOpOOKM JaHMX cIpusie Oe3nepepBHOMY 30UIBIIEHHIO MOTOKY
iHpopMalii, SKUii psAMY€E 10 HEHTPAIBHOTO MPOLECOPY, IPUCTPOIB BiJOOPaXKEHHS UM B KaHAIIU 3B’S3KY.
HocuTe vacto Taka iH(oOpMalis BiAPI3HIETHCA 3HAYHOIO HAJUIMIIKOBICTIO, 110 B CBOIO YEpry Bele /10
HEepalioOHaTbHOTO BUKOPUCTAHHS 00JIaJHAaHHA. 3 METO0 MOJIETIIEHHS POOOTH OmNepalifHUX MPHUCTPOIB,
3HIKEHHS 00’ €My Mam’4Ti 1 MIHIMI3allll CMyTH 4YacTOT CHUCTEM Iepe/iadi, I04aTKOBY 1H(POPMAIlI0 Y TaKUX
BUIAKaX OakaHO TMOMEPEAHhO OOpPOOIATH, Ui YOTO BHUKOHYETHCS YINITbHEHHS Ili€l iHopmamii i
OJTHOYACHO TEPETBOPEHHS y (opMy, 3pyUHY JIJIsl TOAATBIIOTO BUKOPUCTAHHS B IU(POBHUX OJIOKaX.

Haii0inbiy ckimagHICTh BUKJIMKA€E YIIUIBHEHHS 300pa)KeHb, OCKUIBKM HEOOXIJHO 00poOisaTH
MacuBU JIaHUX BEJIMKMX PO3MIpPIB 3 BHUCOKOIO IIBHUJKOAIE€I0. YIIUIBHEHHS 300pakeHb MOJIArae B
MiHIMi3alil KUTBKOCTI 1H(GOpPMAaLiIHHUX €NeMEHTIB, fKi MOTpiOHI UIs MpeACTaBIECHHS 300pakKeHHS.
BigHOBNeHHS 300paXeHHST y TONEpeAHI0O (QOpMY CYIMPOBOIUKYETHCS, SK TPABWIO, JETKAMHU
CIIOTBOPEHHSIMHU.

KonyBaHHs Ha OCHOBI IEPETBOPEHDb PAAMKAIBHO BIAPI3HAETHCS BiJ KIIACUYHUX METOJIB KOJTyBaHHS,
TaKuX SK IMITyJbCHO-KOJIOBAa MOJYJSAIS, KOAYyBaHHS 3 TmependaueHHsSM abo 3 IHTEepIOJALI€El0, SKi

93

