
96 
 

UDC 004.65 

Kopp A.M., Ph.D., Associate Professor of the 

Department of Software Engineering and 

Management Information Technologies 

Orlovskyi D.L., Ph.D., Associate Professor of the 

Department of Software Engineering and 

Management Information Technologies 

MAKING DATA STORAGES DECENTRALIZED: AN IDEA OF SMART CONTRACTS 

GENERATION FROM RELATIONAL DATABASE TABLES 

National Technical University «Kharkiv Polytechnic Institute», Ukraine 

Introduction. Nowadays blockchain is not only about Bitcoin or other cryptocurrencies, it is 

a widely-adopted technology that allows to implement and assure forgery resistance, immutability, 

and decentralized community-backed governance [1]. Blockchain works with transactions that are 

consolidated into blocks that contain hash values of blocks generated before, which creating a chain 

of irreversible and immutable blocks that allows data authenticity and consistency, which could be 

proven by checking conformity of hash values back to the initial block [2]. Thanks to such benefits, 

“smart contracts” were introduced as computer programs executed using so-called “programmable 

blockchains”, such as Ethereum, Polkadot, Solana, EOS, and Binance Smart Chain [3]. 

Problem statement. Today in the corporate segment relational database management systems 

(RDBMS) still dominate. However, emerging trends of data governance assume decentralization in 

order to achieve timestamping and immutability advantages. Thus, a problem of centralized storages 

transformation into decentralized solutions becomes relevant and will be addressed in this paper. 

Related work. As was already mentioned above, smart contracts are nothing more than 

computer programs developed using a programming language called Solidity [4]. But, in contrast to 

other “traditional” programming languages, programs written in a Solidity are stored and executed 

on the blockchain in order to achieve certain functionality [4]. Thanks to one or another blockchain 

platform (e.g. Ethereum or Binance Smart Chain) to which smart contracts are deployed, programs 

do not need any trusted authority to reach consensus, while transactions of smart contracts are always 

traceable and credible [4]. Moreover, there are other specific features of smart contracts: the storage 

of each contract instance is at a permanent address on the blockchain. In smart contracts, each instance 

is a particular execution context and its changes are possible through external calls only [4]. 

In general, Solidity is a high-level Turing-complete statically typed programming language, 

which syntax is the most similar to JavaScript. In Solidity contracts are similar to classes in object-

oriented programming languages. Therefore, like classes, contracts could contain state variables and 

functions to read and change their state in the same way, as it could be done by methods in traditional 

object-oriented programming [5]. Already deployed smart contracts could be considered as instances 

of classes when compared to the object-oriented programming approach. 

Research aims. This study aims at making data storages decentralized using programmable 

blockchain platforms such as Ethereum or Binance Smart Chain by applying the idea of Solidity smart 

contracts generation from relational database tables. 

Therefore, the following tasks should be solved in this study: 

− suggest a method and a corresponding algorithm for the generation of Solidity smart 

contracts source code from database tables already used in relational databases; 

− develop the software prototype to implement the proposed method; 

− perform experiments in order to validate the proposed method; 

− discuss obtained results, make conclusions, and define research directions for future 

work. 



97 
 

Materials. Therefore, in order to represent data structures defined by database table columns, 

we can use the structure type also available in Solidity in order to represent data records stored on the 

blockchain. Sample mapping is demonstrated in Figure 1. 

As it is shown in Figure 1 below, table columns should be translated into structure variables, 

while the string data type is chosen as default for all variables in order to achieve simplicity and, at 

the same time, better compatibility (Solidity data types are too specific and can be barely mapped to 

a variety of modern RDBMS data types). 

 
Fig. 1. Sample mapping between the database table and smart contract structure 

In addition to the structure definition mentioned in Figure 1, the smart contract should contain 

an array of structure instances as the state variable of public scope. Whereas the public getter function 

for this variable will be generated by the Ethereum Virtual Machine automatically, there still should 

be provided two more functions: to add new data records that will be appended to the end of an array 

variable in order to store them on the blockchain; to count the number of records already stored on 

the blockchain (i.e. the length of the array of structure instances). 

Hence, the sequence of steps required to generate the Solidity smart contract using metadata 

of the RDBMS database table could be shown in Figure 2 below. 

 
Fig. 2. Algorithm to generate Solidity smart contracts source code from database tables 

The suggested algorithm was implemented using the Python programming language, whereas 

as the sample database table we used one mentioned in Figure 1 and being the part of the Microsoft 

SQL Server “staff” database. Source code of the Python program, database scripts, and obtained 

Solidity code are available in the experimental GitHub repository [6]. 

Results. Generated smart contract is available at [6] in the “staff.sol” file, as well as the 

Python code used to connect the Microsoft SQL Server instance and retrieve the “employee” table 

columns list. In order to validate generated smart contract, the following steps were made: 



98 
 

− it was deployed to the Ropsten network of Ethereum blockchain for testing purposes; 

− five data records were added to the blockchain using the generated function (see Figure 

3); 

− automatically generated public get function was used to retrieve records (see Figure 3); 

− generated function was used to count records stored on the blockchain (see Figure 3). 

 
Fig. 3. Using smart contract functions to create, retrieve, and count records 

Generate smart contract was verified, so its read and write functions are available at [7]. 

Conclusion and future work. This paper has presented an idea of a “smooth” transition from 

centralized data storage systems to the blockchain-based decentralized traceable and immutable data 

storages, suitable for industries where data security and integrity properties are crucial, such as supply 

chains and logistics, insurance, and real estate, social security and personal data processing, voting 

and governance, healthcare and pharmaceutics. Future research directions include improvement of 

the proposed method, as well as the elimination of current limitations related to the usage of string 

data type for all variables by default, restricted set of functions generated automatically, unsupported 

data integrity and consistency assurance tools, as well as software tool elaboration for usage with 

other RDBMS and possibly NoSQL systems. 

References. 

1. Macdonald M., Liu-Thorrold L., Julien R. The blockchain: a comparison of platforms and 

their uses beyond bitcoin // Work. Pap. – 2017. – P. 1–18. 

2. Sato M. Fundamentals of Blockchains // Blockchain Gaps. – Springer, Singapore, 2021. – 

P. 1–8. 

3. The Best Smart Contract Platforms. [Electronic resource]. Access mode : 

https://academy.shrimpy.io/post/the-best-smartcontract-platforms 

4. Jiao J. et al. Semantic understanding of smart contracts: Executable operational semantics 

of solidity // 2020 IEEE Symposium on Security and Privacy (SP). – IEEE, 2020. – С. 1695–1712. 

5. Wohrer M., Zdun U. Smart contracts: security patterns in the Ethereum ecosystem and 

solidity // 2018 International Workshop on Blockchain Oriented Software Engineering (IWBOSE). – 

IEEE, 2018. – P. 2–8. 

6. GitHub. [Electronic resource]. Access mode : https://github.com/andriikopp/new-research-

calculations/tree/main/sql_server_to_smart_contract 

7. Deployed smart contract “employee_contract”. [Electronic resource]. Access mode : 

https://ropsten.etherscan.io/address/0x47a1c8d7742f22826e89e56c98184eeb17d41540 


